| 
Бесплатный онлайн-доступ
 
ISSN Print: 2689-3967
  | 
Текущий годТом 6, 2025 / Выпуск 4DOI: 10.1615/JMachLearnModelComput.v6.i4 Table of Contents: 
CONDITIONAL PSEUDO-REVERSIBLE NORMALIZING FLOW FOR SURROGATE MODELING IN QUANTIFYING UNCERTAINTY PROPAGATION
Minglei Yang, Pengjun  Wang, Ming Fan, Dan Lu, Yanzhao Cao, Guannan Zhang
 
 
Minglei Yang  
Pengjun  Wang  
Ming Fan  
Dan Lu  
Yanzhao Cao  
Guannan Zhang DOI: 10.1615/JMachLearnModelComput.2025060260 
DIMENSION-REDUCED RECONSTRUCTION MAP LEARNING FOR PARAMETER ESTIMATION IN LIKELIHOOD-FREE INFERENCE PROBLEMS
Rui  Zhang, Oksana Chkrebtii, Dongbin Xiu
 
 
Rui  Zhang  
Oksana Chkrebtii  
Dongbin Xiu DOI: 10.1615/JMachLearnModelComput.2025060234 
SPARSE L1-AUTOENCODERS FOR SCIENTIFIC DATA COMPRESSION
Matthias Chung, Richard Archibald, Paul  Atzberger, Jack Michael  Solomon
 
 
Matthias Chung  
Richard Archibald  
Paul  Atzberger  
Jack Michael  Solomon DOI: 10.1615/JMachLearnModelComput.2025058608 
NUMERICAL SPLITTING SCHEMES AS THE CORNERSTONE FOR MINI-BATCH OPTIMIZATION: ON THE IMPORTANCE OF WELL-BALANCED METHODS
Bilel  Bensaid, Gaël  Poëtte, Rodolphe  Turpault
 
 
Bilel  Bensaid  
Gaël  Poëtte  
Rodolphe  Turpault DOI: 10.1615/JMachLearnModelComput.2025059453 
FEDERATED LEARNING ON STOCHASTIC NEURAL NETWORKS
Jingqiao Tang, Ryan  Bausback, Feng Bao, Richard  Archibald
 
 
Jingqiao Tang  
Ryan  Bausback  
Feng Bao  
Richard  Archibald DOI: 10.1615/JMachLearnModelComput.2025060047 
INDEX, VOLUME 6, 2025
151-155 страниц 
DOI: 10.1615/JMachLearnModelComput.v6.i4.60  | 
 
 | 
| Главная | Текущий год | Архив | Инструкции авторам | Submission Login | Контакты | 
